Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese journal of integrative medicine ; (12): 835-843, 2018.
Article in English | WPRIM | ID: wpr-687896

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the neuro-protective effects of Acanthopanax senticosus Harms (EAS) on mesencephalic mitochondria and the mechanism of action, using a mouse model of Parkinson's disease (PD).</p><p><b>METHODS</b>The chemical fingerprint analysis of the extract of Acanthopanax senticosus Harms (EAS) was performed using the ultra performance liquid chromatograph and time of flight mass spectrometry. Thirty mice were randomly divided into the control group, the MPTP model group, and the EAS treated group with MPTP (MPTP+EAS group, 10 in each group). The MPTP model group and the MPTP+EAS group received MPTP-HCl (30 mg/kg i.p) once a day for 5 days. The control group received an equal volume of saline (20 mL/kg i.p) once a day for 5 days. Induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride daily (MPTP-HCl, 30 mg/kg) for 5 days, the PD mice were treated with EAS at 45.5 mg/kg daily for 20 days. The behavioral testing of mice was carried out using the pole-climbing test. The integrity and functions of neurons were examined in mesencephalic mitochondria in a PD mouse model, including nicotinamide adenine dinucleotide dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), mitochondrially encoded nicotinamide adenine dinucleotide dehydrogenase 1 (MT-ND1), succinate dehydrogenase complex subunit A (SDHA), and succinate dehydrogenase cytochrome b560 subunit (SDHC).</p><p><b>RESULTS</b>After treatment with EAS, the behavioral changes induced by MPTP were attenuated significantly (P<0.05). EAS protected the mesencephalic mitochondria from swelling and attenuated the decreases in their membrane potential (both P<0.05), which was supported by an ultra-structural level analysis. The changes in reactive oxygen species (ROS), malonic dialdehyde (MDA), oxidative phosphorylation (OXPHOS) system 4 subunits levels and PD-related proteins expressions (parkin, Pink1, DJ-1, α-synuclein, and Lrrk2) reverted to near normal levels (all P<0.05), based on the results of immune-histological and Western blotting observations.</p><p><b>CONCLUSIONS</b>The neuro-protective effects of EAS are linked to protecting mice against MPTP-induced mitochondrial dysfunction and structural damage. Therefore, EAS is a promising candidate for the prevention or treatment of mitochondrial neurodegenerative disorders, such as PD.</p>

2.
China Journal of Chinese Materia Medica ; (24): 2019-2029, 2015.
Article in Chinese | WPRIM | ID: wpr-351220

ABSTRACT

To study the potential effect of Dioscorea nipponica(DN) in intervening peripheral system of rats based on metabolomic analysis. The identification of the potential intervention targets of DN in peripheral system may facilitate its safe application and therapeutic potential exploitation. Totally 20 male SD rats were randomly divided into the blank group and the DN-treated groups, with 10 rates in each group. The DN-treated group was orally administrated with DN extracts once a day for 5 days, with the dose of 80 mg x kg(-1) (equivalent to 15 g crude drug in human), and the blank group was given equal volume of saline once a day for 5 days. Heart, liver, spleen, lung, and kidney tissues and serum samples were collected from each rat 24 h later after the last administration. The ultra-performance liquid chromatography/quadrupole time-of-flight-mass spectrometry based metabolomics was used to investigate the effect of DN in intervening peripheral system of rats. After the treatment with DN, 5 modulated metabolites in heart tissue, 6 in liver tissue, 5 in spleen tissue, 3 in lung tissue, 5 in kidney tissue and 6 in serum sample were identified and considered as the potential intervention targets of DN. Effect of DN in regulating some endogenous metabolites was beneficial for protecting peripheral system, while that in other endogenous metabolites produced potential toxicity to peripheral system. The metabolomic analysis revealed the coexistence of protective and toxic effects of DN on peripheral system, which may be a practical guidance for its safe application and beneficial to the expansion of its application scope.


Subject(s)
Animals , Male , Rats , Dioscorea , Chemistry , Drugs, Chinese Herbal , Pharmacology , Heart , Kidney , Chemistry , Metabolism , Liver , Chemistry , Metabolism , Lung , Chemistry , Metabolism , Metabolomics , Rats, Sprague-Dawley , Spleen , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL